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The Spin Statistics Connection for Dyons 

R. A. Brandt 1 

CERN, Geneva, Switzerland 

J. R.  Primaek 2 

Department of Physics, University of  California, Santa Cruz, California 95064 

Goldhaber's spin-statistics connection for electric-pole--magnetic-pole com- 
posite "dyons" is deduced in a gauge-invariant way by connecting the spatial 
interchange operator with a rotation. 

I t  has been known for some time, and has recently been stressed in the 
context of  non-Abelian gauge theories, that wave functions representing 
spinless particles can nevertheless transform under rotations as spinors, in a 
theory involving monopoles. Furthermore, Goldhaber (1976) 3 has recently 
shown in the context of  nonrelativistic quantum mechanics tha t  two in te r -  
acting electric-pole(e)-magnetic-pole(g) composite systems (which we will 
henceforth refer to as "dyons")  behave as fermions when interchanged. In 
this comment  we further discuss this result. Our purpose is threefold: (i) by 
considering the relevant rotation operators (Zumino, 1966; Frenkel and 
Hrasko,  1975; Bais et al.), we recall how dyons transform under rotations; 
(ii) by treating the interchange operation (in a special case) as a rotation by ~r 
about the center-of-mass of  the two-dyon system, we show how the dyons 
behave upon interchange; and (iii) by defining a gauge-invariant interchange 
operator, we explicitly establish the gauge invariance of the spin-statistics 
connection for dyons. I t  is clearly seen in this way that the spinor and 
fermionic behaviors of  the dyons have exactly the same origin, namely, the 
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need to rotate Dirac strings by gauge transformations in order to achieve 
manifest rotational invariance. The spin-statistics connection is thus con- 
firmed in this interesting quantum-mechanical system. 

For  clarity we will first outline our arguments and afterwards supply 
technical details. Consider first a composite "dyon"  consisting of  an elec- 
trically charged particle moving in the magnetic field I-I = I zP / r  2 of  a fixed 
monopole with magnetic charge g = 4rr/z. The Schr~Sdinger equation for the 
charged-particle wave function involves the vector potential 

1 ~ x f i  
A~(r) = (1) 

r l  - P . ~  

whose curl differs from H//~ by a string singularity from the monopole to 
infinity along the direction ti. Provided the Dirac quantization condition 
(Dirac, 1931) 

e - - e l  ~ = e g  _ n 4rr 2 n = O, __ 1, __ 2 . . . .  (2) 

is satisfied, the string can be arbitrarily moved by an acceptable gauge trans- 
formation and is, therefore, unobservable (Brandt and Primack, 1977). 

The conserved angular momentum operator in the above theory is 

Jn = r x ( - i V  - aA~) - , f  = 1 + Jn (3) 

where 

1 = r • ( - i V )  (4) 

generates coordinate rotations r --> e-~"~r and 

Jn = - e ( r  • An + P) (5) 

generates the corresponding gauge transformation which preserves the original 
direction of  the string. Thus the transformation ~b~(r) ~ ~(to)ffn(r) generated 
by (3) is a transformation from one solution of the Schr~dinger equation to 
another solution constructed using the vector potential (1). Infinitesimal 
rotations about ~ are generated by 

~ . J .  = ~.1 + ,  (6) 

which can be immediately integrated to give the finite rotation operator 

~ ( o ~ )  = e-  t(0r~.l - - , r  (7) 

In particular, 

~(2~,~) = ( -1 )  5` (8) 

and so the composite dyon is seen to transform under rotations as spin e. A 
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more detailed analysis (Zumino, 1966; Frenkel and Hrasko, 1975; Bais et al.) 
confirms that 

~(2~r~3) = ( -1 )  2` 

for 2~r rotations about an arbitrary axis & as required by rotational invariance. 
Nothing in the above discussion is changed if a potential V(r) is added to the 
Hamiltonian to provide (nonelectromagnetic) binding between e and g. 

To investigate the behavior of the composite dyons considered above 
upon interchange, we consider next a system of two identical dyons (el, gl) = 
(e2, g2) = (e, g). The Schr/Sdinger equation separates with respect to the over- 
all center-of-mass rl + r2 (rl and r2 are the coordinates of the center-of-mass 
of the individual dyons), and so we need only concern ourselves here with the 
dependence of the wave function ~b.ln2(r ) on the relative coordinate r = 
r~ - r2, the dyon strings n~ and n2 [see equations (22) and (23)], and the 
internal coordinates of the dyon. The string directions can again be individually 
rotated arbitrarily by a gauge transformation, and it is convenient to choose 
identical strings h~ = h2 = ~, because then the Hamiltonian for the system 
is invariant under the interchange r~ +-+ r2 of the dyon coordinates, and so 
~b, l n l ( - r  ) is then also a solution of the Schrtdinger equation. It is only in 
this case that we can make contact with the usual requirements on the sym- 
metry of wave functions, namely, that if the individual particles e and g are 
both bosons (which we shall assume for simplicity) then ~b must be symmetric 
under r ~ - r: 

~bm~(r) = ~b~(-r) ( 9 )  

Ordinarily, r ~ - r  actually represents the physical interchange of the 
two identical particles. We can see this by imagining the interchange to take 
place physically, for those values of the relative coordinate r lying in the plane 
through r = 0 perpendicular to any given axis h, by means of a 180 ~ rotation 
about t~: 

J~b(r) = N(wh)~b(r) = ~b(-r) r .h  = 0 (10) 

where J is the interchange operator and N is the rotation operator 

~ ( t o )  = e -t'~ (11)  

where the orbital angular momentum (4) generates rotations of the relative 
coordinate r. (Spin is here an inessential complication and we ignore it.) When 
there are monopoles interacting with electric charges, however, we have 
already seen that the rotation operator must be generalized to 

J-~(to) = e-'~ (12) 
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where ,In, equation (3), generates a gauge transformation together with a 
coordinate rotation. The corresponding generalization of  (10) is 

where 

JC,,=(r) = ,e ' ,=(,m)~=(r)  r . ~  = 0 (13) 

f i . J ~  = ti.l + 2~ (16) 

we find immediately that 

Hence 

~n(rr~) = ( -1)2 'e  -'~a'z 

J r  = ( - 1 ) ~ ' q , ~ ( -  r) = ( - 1 ) ~ " r  

(17) 

(18) 

1 3 Thus for ~ = ~, ~ . . . . .  the dyons indeed behave as fermions under  inter- 
change even though they are made out of bosons. Comparison o f  equations 
(8) and (18) provides the usual connection between spin and statistics and 
exposes the identical origin of the E = i dyon's half-integer spin and fermionic 
behavior under interchange, 

We proceed to supply the details which establish the above conclusions. 
Consider first a single composite dyon system. The charged-particle wave 
functions ~bn(r) which are solutions of the SchrSdinger equation 

m ( - i V  - ,A~)2~bn = E~b n (19) 

are single valued because of the quantization condition (2). The string is not 
observable because its position can be arbitrarily changed by a gauge trans- 
formation. This theory is rotationally invariant because the effect of a rotation 
r --> R -  l(to)r on a string can be undone by a gauge transformation. The actual 

o~r',~(to) = e - ' ~  (14) 

and the operator which generates rotations of the relative coordinate is 

anln~ = r • { - i V ,  + ,[Anl(r) - Am(- r ) ]  } (15) 

where An is defined by (1) and 

r = e l ~ l  = e2~2 

Note that the rotation operator (14) does not affect the internal coordinates 
of  the dyons [see equation (23)], since the relative coordinate (r) and 
momentum (=) [see equation (24)] and the angular momentum operator 
(15) constructed from them all commute with the internal coordinates. It 
will therefore enable us to construct a bona fide interchange operator. Since 
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rotation operators are given by (see Zumino, 1966; Frenkel and Hrasko, 1975; 
Bais et/d.)  

~ ( t a )  = exp &[f2~",)~,n(r) - ~7~(to)]~(to) (20) 

where ~ ,~(r )  is the solid angle of the infinite surface bounded by n and n' as 
seen from r, and 

~ . ( ~ , )  = ~ + r", (21) 

in terms of the Euler angles (~",,/3,,, y",) corresponding to the rotation to. It is 
not difficult to check that the infinitesimal rotations given by (20) are generated 
by (3). In particular, the form (20) immediately gives equation (8), using (21), 
and also immediately gives ~(2rr~a) = ( - 1 )  =" for &.h = 0, using the defini- 
tion of f2,,n (an entire plane subtends a solid angle of + 2rr from any view- 
point). 

We next take up the system of two identical dyons. Neglecting for 
simplicity the internal structure of the dyons, the Hamiltonian in relative 
coordinates is 

p2 (p __ e A n l n 2 ) 2  e z + g= 
~,,~2 = 4---M + M + 4rr-------7-- (22) 

where 

P = �89 ~- P2) 

P = P l - P 2  (23) 

An~2(r) = An~(r) - A ~ ( - r )  

and M is the mass of each dyon. Equation (22) leads to the correct non- 
relativistic Heisenberg equation of motion, and the corresponding SchrSdinger 
equation is invariant under independent gauge transformations on each vector 
potential. The kinetic momentum conjugate to r is (Goldhaber, 1976) 

~x = i m [ ~ ,  r] = p - EA,,ln 2 (24) 

and so the generator of  rotations of r is (15) 

J = r • ~ (25) 

since the total electromagnetic angular momentum vanishes. It can indeed 
be immediately checked that (25) does generate the desired rotations by using 
the commutation relations ~ 

[rr ~, rrq = 0 [r ~, r j] = 0 [r ~, ~rJ] = i3 tj (26) 

4 These are true as operator equations on the Hilbert space of eigenfunctions of -~n~.nz 
[see Brandt and Primack, 1977]. 
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The Hamiltonian (22) is invariant under the interchange r l  ~-~ r2 (i.e., r ~-~ - r ,  

p ~ - p )  if the strings are chosen to lie in the same direction, say h.5 
We have stressed that only in the gauge nl = n2 = n can the equation 

(9), which expressed the bosonic nature of the constituents, be assumed. In 
an arbitrary gauge, this then implies that the constituents described by ~b.ln2(r ) 
are bosonic if this wave function, when transformed by a gauge transforma- 
tion ~ to the ~1 = fi2 = h gauge, satisfies (9); i.e., if 

r = ~nln,n2~(r)~(r) (27) 
then the definition 

Jnln2(r) = ~ln,n~n(r)J~;l~,~n(r) (28) 

together with (18) gives 

Jn~n~(r)~'nln~(r) = (-1)2"~n~n~(r) (29) 

trivially establishing the gauge invariance of  the spin-statistics connection for 
dyons. 6 

Our argument is analogous to that of Goldhaber (1976), but has the 
virtue of being manifestly gauge invariant. Goldhaber invokes the Bose 
symmetry under interchange of the dyon constituents in the t i l =  t~2 = t~ 
gauge (see his footnote 7) to conclude that his wave function ~F(r) (=  ~bn~ in 
our notation) is symmetric under interchange. He then transforms to a gauge 
t~ = -~2  = fi in which A~n2 vanishes, points out that the corresponding 
wave function �9 = e - ~  (see footnote 7 below) is antisymmetric under 
interchange, and concludes that the dyons are therefore fermions. Indeed, in 
that gauge, our interchange operator 3r~_n has only the effect r - - > - r  
without an additional gauge transformation (since Jn,-n -- r • p) so the 

5 For  the choice of  strings th = - t12 = t~, Anln2 vanishes (the existence of  such a gauge is 
obvious  since the curl o f  Amn 2 is zero) and the Hami l ton ian  (22) again becomes  inter-  
change symmetr ic .  Our cons t ruc t ion  o f  J in this case would  then  not produce  the 
( - 1 )  2~ factor.  (We thank  P. Hasenf ra tz  for  raising this question.)  The poin t  is that  it is 
implicit  in our  entire discussion that  our  dyons  are really charged b o s o n - m o n o p o l e -  
boson  composi tes  so that  the Hami l ton ian  actually conta ins  the addi t ional  te rm 

. [Anl(r) An2(-r)] [An~-r) An2(r)] 
~P~ t m~ + + ep2. + mg l m~ J 

involving the dyon internal  momen ta ,  and thus the Hami l ton ian  is exchange invariant  
only if ~z = ~2. [However,  if  r = 0, + 1, + 2 . . . . .  the term becomes exchange invariant  
also for ~ = - ~ 2  = ~ if Schwinger 's  vector  potent ia l  �89 + A - n )  is used,  but  then 
dyons  never behave  as fermions.]  

6 This shows in part icular  that  the same conclusions are valid in the nonsingular  formula-  
tion o f  m o n o p o l e  theory due to Wu and Yang,  Phys. Rev. D 12, 3845 (1975). The 
equivalence o f  this approach  with that  o f  Dirac  is shown in Brandt  and Pr imack (1976). 

7 This equat ion,  with ~(r) = �9 ~r d~ '  [,4n(~) - A -n(~)], is a special case o f  our  relation (27) 
and  (]) = ~ n , - n  is our  nota t ion .  
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( - 1 )  2~ symmetry of  the wave function under r --> - r  in this gauge does give 
the interchange eigenvalue. 

In Goldhaber 's  approach, the only assumption needed was (9), whereas 
we required both (9) and (13). We could also proceed without invoking (13) 
by arguing (as does Goldhaber) that the interchange operator J must reduce 
simply to coordinate interchange in the nl = - n 2  gauge in which Anl~2 = 0. 

In conclusion, let us stress that neither we nor Goldhaber have proved 
that the usual spin-statistics connection is valid for dyons. Rather, we have 
shown that the assumption (9) directly implies this connection. This suggests 
that the connection can actually be proved if and when a complete quantum 
field theory of  magnetic charge is constructed. 
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